MULTINOMIAL関数 – 数学/三角

MULTINOMIAL関数 – 多項係数(多項式の係数)を求める関数


1. 使い方と活用例

MULTINOMIAL関数は、複数の整数の階乗を使って多項係数を計算する関数です。

多項係数とは、次のような式で定義される係数です。

(n₁ + n₂ + ... + nk)! / (n₁! × n₂! × ... × nk!)

確率論や組み合わせ論、多項分布の計算などに利用されます。

2. 基本の書式

=MULTINOMIAL(number1, [number2], ...)

3. 引数の説明

  • number1 – 必須。最初の数値(非負の整数)。
  • [number2], … – 省略可能。追加の非負整数(最大254個まで指定可能)。

4. 使用シーン

  • 多項分布(例:3つ以上のカテゴリに分類される事象)の係数計算。
  • 異なるグループへの配分や並べ替えのパターン数の計算。
  • 数学や統計教育での多項式展開の係数確認。

5. 応用のポイント

MULTINOMIAL関数は、合計の階乗を個別の階乗の積で割った「多項係数」を返します。
入力はすべて非負の整数である必要があり、負の数や非数値を含むと #NUM! または #VALUE! エラーになります。
すべての数値が 0 の場合、結果は 1 になります(0! = 1 として計算)。

6. 具体例とその解説

次の式では、多項係数 (2 + 3 + 4)! ÷ (2! × 3! × 4!) を計算します。

=MULTINOMIAL(2, 3, 4)

合計は9なので、計算式は以下の通りです。

9! / (2! × 3! × 4!) = 362880 / (2 × 6 × 24) = 362880 / 288 = 1260

結果は「1260」となります。

7. 関連関数の紹介

  • COMBIN関数 – 組み合わせ(n個からr個を選ぶ)を求める関数
  • FACT関数 – 指定した数値の階乗を返す関数
  • PERMUT関数 – 順列(並べ方)の数を求める関数
  • COMBINA関数 – 重複ありの組み合わせ数を求める関数
  • BINOM.DIST関数 – 二項分布に基づく確率を求める関数

8. まとめ

MULTINOMIAL関数は、複数の値から多項係数を計算するための関数で、確率・統計・組み合わせ数学などにおいて非常に有用です。
特に、多項分布や組み合わせパターンの総数を扱う計算において、簡潔な式で正確な値を得ることができます。

9. 対応バージョン

Excel 2003以降のすべてのバージョンで使用可能です。
Excel 365、Excel 2019、Excel Online でも問題なく利用できます。