ATAN2関数 – X座標とY座標からアークタンジェント(逆正接)を返す関数
1. 使い方と活用例
ATAN2関数は、直交座標上のX座標とY座標を指定して、原点からその点へのベクトルの偏角(角度)をラジアン単位で返す関数です。
第1〜第4象限すべてに対応しており、方向角の判定や角度計算などに広く使われます。
2. 基本の書式
=ATAN2(X, Y)
3. 引数の説明
- X – ベクトルのX成分(横方向の値)。
- Y – ベクトルのY成分(縦方向の値)。
4. 使用シーン
- 座標から角度を求めたいとき(例:ゲーム開発、ロボットの回転方向)
- 2点間の相対的な方向(方位角)を求めたいとき
- 三角形やベクトルの計算に角度を用いる場合
5. 応用のポイント
ATAN2関数は、通常の ATAN(Y/X)
に比べて符号と象限を正確に反映するのが特徴です。
たとえば (X, Y) = (1, 1) は第1象限なので角度は約 0.785ラジアン(45度)、(X, Y) = (−1, 1) は第2象限なので角度は約 2.356ラジアン(135度) となります。
ラジアンを度に変換するには DEGREES
関数を使用します。
6. 具体例とその解説
=ATAN2(1, 1)
X=1、Y=1 の場合、45度に相当する 約0.785ラジアン が返されます。
=DEGREES(ATAN2(-1, 1))
X=−1、Y=1 の場合、第2象限の方向を示す 約135度 が返されます。
=DEGREES(ATAN2(0, -1))
X=0、Y=−1 の場合、ベクトルは真下方向を向くため、角度は 270度(= −90度)として表示されます。
7. 関連関数の紹介
- ATAN関数 – 単一の数値に対する逆正接(arctan)を返す関数
- DEGREES関数 – ラジアンを度に変換する関数
- RADIANS関数 – 度をラジアンに変換する関数
- SQRT関数 – X²+Y² の平方根を求めてベクトルの大きさを計算する関数
8. まとめ
ATAN2関数は、X・Y座標から正確な方向角(ラジアン)を求める関数で、象限を区別して角度を返すため、通常のATAN関数よりも高精度な角度演算が可能です。
ベクトル処理や座標計算の基本ツールとして非常に有用です。
9. 対応バージョン
ATAN2関数は、Excel 2003以降すべてのバージョンで使用可能です。
Microsoft 365、Excel for Mac、Web版Excelでも対応しています。